我的购物车
  • 哈尔滨恒压给水变频控制柜
  • 哈尔滨恒压给水变频控制柜

哈尔滨恒压给水变频控制柜

联系该企业时请说明您是在《制冷名录》看到该信息,以获得更多的信任和更好的服务。
价格:电议
进店看看>
哈尔滨德航商贸有限公司
  • 联系人:吕会希
  • 点击获取联系方式
  • 地区:黑龙江 哈尔滨
产品分类
热销产品

本公司承接恒压变频给水控制柜工程,绝对专业,价格合理 品质保证 欢迎来电洽谈!

在目前的城市供水系统和小区高楼供水系统中还有很多采用高位水塔或直接水泵加压供水方式,在这种供水方式中由于扬水较高且电机一直高速运行造成较大的电能消耗,目前的水费成本中,电费比例达50%以上。
    本文针对黑龙江东部地区某大型泵站供水系统的实际情况,采用PLC和变频器组成恒压供水系统,取代了原来的手动调节方式,实现对供水压力的自动控制。而且在原系统基础上只用了极少的投资即完成了项目的改造,该系统可以明显节约电能并使管网水压波动较小,从而降低了设备运行的故障率和工人的劳动强度,具有良好的经济效益和社会效益。
2水泵特性分析及节能原理
   泵是一种平方转矩负载,其转速n与流量Q、扬程H及泵的轴功率N的关系如下式所示:

    (2—1)表明,泵的流量与其转速成正比,泵的扬程与其转速的平方成正比,泵的轴功率与其转速的立方成正比。当电动机驱动泵时,电动机的辅功率P(kW)可按式(2—2)计算:

    2—1是泵的流量Q与扬程H的关系曲线。图中,曲线①为泵在转速n1下的扬程—流量(H—Q)的特性;曲线⑤为泵在转速n2下的扬程—流量(H—Q)的特性;曲线②为泵在转速n1的功率—流量(P—Q)的特性;曲线③、④为管阻特性。
    假设泵的标准工作点A点的效率,输出流量Q为100%,此时轴功率P1与Q1、H1的乘积面积AH1OQ1成正比。根据生产工艺要求,当流量从Q1减小到Q2时,如果采用调节阀门方法(相当于增加管网阻力),使管阻特性从曲线③变到曲线④,系统由原来的工作点A变到新的工作点B运行。此时,泵扬程增加,轴功率P2与面积BH2OQ2成正比。如果采用变频器控制方式,泵转速由n1降到n2,在满足同样流量Q2的情况下,扬程H3大幅降低,轴功率P3与面积CH3OQ3成正比。轴功率P3与P1、P2之和相比较,将显著减小,节省的功率损耗ΔP与面积BH2H3C成正比,节能效果十分显著[1]。

3模糊变频恒压供水系统
    恒压供水是指用户段不管用水量大小,总保持管网水压基本恒定,这样,既可满足各部位的用户对水的需求,又不使电动机空转,造成电能的浪费。为实现上述目标,利用PLC根据给定压力信号和反馈压力信号,通过模糊推理运算,控制变频器调节水泵转速,从而达到控制管网水压的目的。变频恒压供水系统如图3—1所示。根据供水压力要求,采用一用一备变频恒压供水系统。

3.1系统主电路
    一用一备变频器恒压供水系统就是一台水泵供水、另一台水泵备用,当供水泵出现故障或需要定期检修时,备用泵马上投入,不使供水中断。两台水泵均为变频器驱动,并且当变频器故障时,可自动实现变频/工频切换。主电路如图3—2所示。图中,M1为主泵电机,M2为备用泵电机,QF为低压断路器,KM0,KM1,KM2,KM3,KM4为接触器,FR1,FR2为热继电器[2]。

3.2控制系统硬件设计
    该系统主要由S7200、CPU214的PLC一台及TD200文本显示器,台达VFD220A23A变频器,D150型压力变送器,流量计及检测水箱液位的差压变送器,V/F转换电路,两台22kW笼型三相异步电动机。控制电路如图3—3所示。当PLC控制变频器启动后压力表检测出管网压力为0~10V模拟电压信号,经由LM331组成的V/F转换电路转换为0~2kHz的频率信号,送入PLC的高速输入端口作为实际压力值。PLC接收到压力值后与给定压力进行比较,然后通过模糊推理运算,控制变频器的多段速输入端子M11、M12、M13的通断,变频器依据事先的设定频率,控制水泵进行调速运行,从而控制供水压力。

    PLC同时还完成控制变频器启动和接收变频器故障报警信号,通过水池内的差压变送器自动监测水池中的水位,使变频器控制水泵电动机在无水后自动停机。另外变频器本身具有过压、过流、断相、过热保护和故障显示等功能。TD200文本显示器主要用来完成模糊控制量化因子、采样周期的设定,实时供水压力显示,压力设定值显示等功能。
3.3水压模糊控制系统软件设计

    在改造之前,该系统采用人工手动调节控制,操作人员根据管道压力表的读数,手动调节变频器的给定频率,从而提高或降低管网水压,达到恒压供水的目的。由于用户较多并且用水时间不确定,管网水压波动较大,数学模型很难确定,而模糊控制不需要精确的数学模型,因此本系统控制算法采用模糊控制方式进行设计。
    模糊控制器的设计主要包括以下3部分[3]:
    (1)选择输入输出变量
    压力的给定值设为p,管道的实测压力值为p(k),则误差为e(k)=p-p(k)作为模糊控制器的输入变量,输出变量为控制变频器的给定频率值u,这里采用多段速端子控制来实现。
    (2)确定各模糊变量的隶属函数
    描述输入e及输出变量u的语言值的模糊子集为{负大,负小,0,正小,正大}简记为{NB,NS,O,PS,PB},设误差e的论域为X,并将误差大小量化为7个等级,X={-3,-2,-1,0,1,2,3},控制量u的论域为Y,也量化为7个等级,即Y={-3,-2,-1,0,1,2,3}。误差的隶属函数采用三角形,而控制量的隶属函数采用单点形。
    (3)建立模糊控制规则
    根据现场操作人员手动调节供水压力的经验,控制规则用语言描述如下:
    若压力低于给定值则提高变频器输出频率,低得越多频率提得越多;若压力高于给定值则降低变频器输出频率,高得越多频率降得越多;若压力等于给定值则变频器输出频率不变。根据上述的手动控制规则得到模糊控制规则如下:
 
    (4)离线计算模糊控制表
    由上述的模糊控制规则采用minmax重心法推算出实际应用的模糊控制表及对应变频器输出频率如表3—1所示。

    在实时压力控制过程中,上述控制表存在PLC的内存中,PLC的高速输入端口接收管网中的压力值,并与给定值进行比较,计算偏差e,乘以相应的量化因子并经取整处理变换成模糊变量E。根据对应的E通过查找控制表得到控制量U,然后控制多段速端M11,M12,M13的不同接通组合,从而改变电机转速达到控制水压的目的。在实际运行中由于泵的特性,在转速很低时泵的效率下降损耗增加,所以在PLC控制变频器启动后,当电机转速达到额定值的30%时模糊控制器开始工作,即调节过程中电机的转速为额定值的30%。
4结论
    该系统充分利用S7200自身资源,利用高速输入口来完成A/D转换,利用变频器的多段速输入端子实现D/A,极大地降低设计成本。该系统设计是在原系统的基础上进行的,因此,原系统的硬件都无需更换,只加上了控制器PLC和自行设计的由LM331组成压频转换器。采用模糊控制方式设计调试十分方便,在现场只要合适的设定多段速频率值,即可获得满意的控制效果,另外该系统联网能力强,PLC和变频器都具有标准的通讯接口,可方便的和各种通用组态软件连接,进行现场状态监控。该系统投入运行半年来一直十分稳定,故障率极低,而且操作容易,节能效果十分明显。

好评度
{{GoodNumPer}}%
{{item.LabelTitle}}
  • 全部评价({{AppraiseStatistics.AllNum}})
  • 好评({{AppraiseStatistics.GoodNum}})
  • 中评({{AppraiseStatistics.MidNum}})
  • 差评({{AppraiseStatistics.BadNum}})
  • 晒图
同类推荐